Объектами проектирования на системном уровне являются такие сложные системы, как производственные предприятия, транспортные системы, вычислительные системы и сети, автоматизированные системы проектирования и управления и т.п. В этих приложениях анализ процессов функционирования систем связан с исследованием прохождения через систему потока заявок (иначе называемых требованиями или транзактами). Примерами транзактов в названных системах могут служить заготовки и обрабатываемые детали, пассажиры и грузы, решаемые задачи и запросы на информационные услуги, технические задания и обрабатываемые документы. Разработчиков подобных сложных систем интересуют прежде всего такие параметры, как производительность (пропускная способность) проектируемой системы, продолжительность обслуживания (задержки) заявок в системе, эффективность используемого в системе оборудования.
Очевидно, что параметры заявок, поступающих в систему, являются случайными величинами и при проектировании могут быть известны лишь их законы распределения и числовые характеристики этих распределений. Поэтому анализ функционирования на системном уровне, как правило, носит статистический характер. В качестве математического аппарата моделирования удобно принять теорию массового обслуживания, а в качестве моделей систем на этом уровне использовать системы массового обслуживания (СМО).
Типичными выходными параметрами в СМО являются числовые характеристики таких величин, как время обслуживания заявок в системе, длины очередей заявок на входах, время ожидания обслуживания в очередях, загрузка устройств системы, а также вероятность обслуживания в заданные сроки и т.п.
В простейшем случае СМО представляет собой некоторое средство (устройство), называемое обслуживающим аппаратом (ОА), вместе с очередями заявок на входах. Более сложные СМО состоят из многих взаимосвязанных ОА. Обслуживающие аппараты СМО в совокупности образуют статические объекты СМО, иначе называемые ресурсами или каналами. Например, в вычислительных сетях ресурсы представлены аппаратными и программными средствами. Транзакты в СМО называют динамическими объектами.
Состояние СМО характеризуется состояниями составляющих ее объектов. Например, состояния ОА выражаются булевыми величинами, значения которых интерпретируются как (занято) и (свободно), и длинами очередей на входах ОА, принимающими неотрицательные целочисленные значения.
Системы массового обслуживания подразделяют на одно- и многофазные, на одно- и многоканальные, на СМО с отказами и с очередями. Фазой называют ОА, включенный последовательно с некоторым предыдущим ОА, а каналом - ОА, включенный параллельно с некоторым другим ОА.
В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.
В СМО с очередями заявка, пришедшая в момент, когда все ОА заняты, не уходит, а становится в очередь и ожидает обслуживания.
СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь. Возможны ограничения на длины очереди и на время ожидания в очереди. Правило, согласно которому заявки выбирают из очередей на обслуживание, называют дисциплиной обслуживания, а величину, выражающую преимущественное право на обслуживание, — приоритетом. В бесприоритетных дисциплинах все транзакты имеют одинаковые приоритеты. Среди бесприоритетных дисциплин наиболее популярны дисциплины FIFO (первым пришел — первым обслужен), LIFO (последним пришел — первым обслужен) и со случайным выбором заявок из очередей.
В приоритетных дисциплинах для заявок каждого приоритета на входе ОА выделяется своя очередь. Заявка из очереди с низким приоритетом поступает на обслуживание, если пусты очереди с более высокими приоритетами. Различают приоритеты абсолютные, относительные и динамические. Заявка из очереди с более высоким абсолютным приоритетом, поступая на вход занятого ОА, прерывает уже начатое обслуживание заявки более низкого приоритета. В случае относительного приоритета прерывания не происходит, более высокоприоритетная заявка ждет окончания уже начатого обслуживания. Динамические приоритеты могут изменяться во время нахождения заявки в СМО.
В открытой СМО в отличие от замкнутой СМО характеристики потока заявок не зависят от того, в каком состоянии находится сама СМО.
Исследование поведения СМО, т.е. определение временных зависимостей переменных, характеризующих состояние СМО, при подаче на входы любых требуемых в соответствии с заданием на эксперимент потоков заявок, называют имитационным моделированием СМО. Имитационное моделирование проводят путем воспроизведения событий, происходящих одновременно или последовательно в модельном времени. При этом под событием понимают факт изменения значения любой фазовой переменной.
Подход, альтернативный имитационному моделированию, называют аналитическим исследованием СМО. Аналитическое исследование заключается в получении формул для расчета выходных параметров СМО с последующей подстановкой значений аргументов в эти формулы в каждом отдельном эксперименте.
Модели СМО, используемые при имитационном и аналитическом моделировании, называются имитационными и аналитическими моделями соответственно.
Аналитические модели удобны в использовании, поскольку для аналитического моделирования не требуются сколько-нибудь значительные затраты вычислительных ресурсов, часто без постановки специальных вычислительных экспериментов разработчик может оценить характер влияния аргументов на выходные параметры, выявить те или иные общие закономерности в поведении системы. Но, к сожалению, аналитическое исследование удается реализовать только для частных случаев сравнительно несложных СМО. Для сложных СМО аналитические модели если и удается получить, то только при принятии упрощающих допущений, ставящих под сомнение адекватность модели.
Поэтому основным подходом к анализу САПР на системном уровне проектирования считают имитационное моделирование, а аналитическое исследование используют при предварительной оценке различных предлагаемых вариантов систем.
Некоторые компоненты СМО характеризуются более чем одним входным и (или) выходным потоками заявок. Правила выбора одного из возможных направлений движения заявок входят в соответствующие модели компонентов. В одних случаях такие правила относятся к исходным данным (например, выбор направления по вероятности), но в некоторых случаях желательно найти оптимальное управление потоками в узлах разветвления. Тогда задача моделирования становится более сложной задачей синтеза, характерными примерами являются маршрутизация заявок или синтез расписаний и планов.