Уравнения Колмогорова составляют основу аналитических моделей СМО. Их можно получить следующим образом.
Изменение вероятности нахождения системы в состоянии за время есть вероятность перехода системы в состояние из любых других состояний за вычетом вероятности перехода из состояния в другие состояния за время , т.е.
 (1)

где () и () — вероятности нахождения системы в состояниях и соответственно в момент времени ; произведение вида есть безусловная вероятность перехода из в , равная условной вероятности перехода, умноженной на вероятность условия; и — множества индексов инцидентных вершин по отношению к вершине по входящим и исходящим дугам на графе состояний соответственно.
Разделив выражение (1) на и перейдя к пределу при , получим

откуда следуют уравнения Колмогорова

В стационарном состоянии и уравнения Колмогорова составляют систему алгебраических уравнений, в которой -й узел представлен уравнением
 (2)

Прибавляя к левой и правой частям уравнения (2) и учитывая что

получаем

т.е.

где — финальные вероятности.