Для решения нестационарных задач с помощью МКР используется та же идея дискретизации независимой переменной, что и при решении стационарных задач, в данном случае такой независимой переменной помимо пространства является время. На ось времени наносится сетка, в узлах которой выполняется аппроксимация частной производной по времени.
Но поскольку при этом возможны различные сочетания конечных разностей по оси координат и по времени, можно получить различные схемы решения нестационарных задач. Рассмотрим их на примере нестационарного уравнения теплопроводности:
 (1)

Пусть при записи разностей нижний индекс соответствует оси , а верхний — оси времени.
Первый вариант разностного уравнения, апроксимирующего исходное (1):
 (2)

называется явной разностной схемой, поскольку в этом уравнении всего одна неизвестная величина , которая может быть вычислена явным образом. Остальные переменные, входящие в уравнение (2) известны либо как начальные условия (при ), либо с предыдущего временного слоя.
Второй вариант разностного уравнения, апроксимирующего исходное (1):
 (3)

называется неявной разностной схемой, поскольку в этом уравнении несколько неизвестных величин, относящихся к -му временному слою. Для их нахождения придется записать систему разностных уравнений для всех внутренних узлов сетки, и решить ее.
Графическое изображение разностных уравнений получило название шаблонов решения сответствующих задач. В данном случае на рис. 1,а представлен шаблон явной разностной схемы, а на рис. 1,б — неявной.
Рис. 1.  Шаблоны явной и неявной разностной схемы
Использование шеститочечного шаблона применено в схеме Кранка-Николсона:

В общем случае использования шеститочечного шаблона, имеем схему с весами:

которая при является неявной.