Структурная схема инстара Гроссберга представлена на рис. 1.
Рис. 1.  Структурная схема инстара Гроссберга
Особенностями инстара, отличающими его от нейронов других типов, являются следующие:
  1. функция активации часто линейна, т.е. ;
  2. входной вектор нормализован так, что его эвклидова норма равна 1;
  3. обучение инстара возможно как с учителем, так и без него.
Нормализация элементов вектора производится по следующей формуле:

Обучение инстара с учителем производится дискретно по правилу Гроссберга

где — коэффициент обучения, значение которого выбирается в диапазоне (0, 1). В качестве начальных обычно выбираются нулевые значения весовых коэффициентов. Необходимо обратить внимание, что на изменение значений весовых коэффициентов оказывают влияние только положительные примеры эталонных пар, для которых .
На процесс обучения инстара решающее влияние оказывает величина коэффициента обучения . При веса принимают значения соответствующих входов текущей эталонной пары за один цикл обучения (при этом происходит абсолютное "забывание" предыдущих значений . При в результате обучения коэффициенты принимают некоторые "усредненные" значения обучающих векторов , = 1, 2, ..., .
Предположим, что -ый инстар был обучен на единственной положительной эталонной паре . При этом вектор входных весов инстара . В режиме классификации на вход инстара подается вектор , тогда на выходе вырабатывается сигнал

Поскольку входные векторы и нормализованы (т.е. ), то выходной сигнал инстара равен просто косинусу угла между векторами и .
Функционирование инстара наглядно иллюстрируется графически. В режиме обучения при предъявлении, например, трех положительных примеров, содержащих двухкомпонентные векторы , и , подбирается вектор входных весов , представляющий собой "усреднение" этих входных векторов, как это показано на рис. 2.
Рис. 2.  Результат обучения инстара Гроссберга
В режиме классификации при подаче на вход инстара очередного вектора определяется степень его близости к "типичному" вектору в виде косинуса угла между этими векторами, как это показано на рис. 3.
Рис. 3.  Классификация входного вектора обученным инстаром Гроссберга
Обучение инстара Гроссберга без учителя предполагает случайный выбор начальных значений входных весов и их нормализацию, подобную нормализации вектора входных сигналов . Дальнейшее уточнение весов реализуется следующей формулой: